We show that there is a way to unify distribution functions that describe simultaneously a classical signal in space and (spatial) frequency and position and momentum for a quantum system. Probably the most well known of them is the Wigner distribution function. We show how to unify functions of the Cohen class, Rihaczek's complex energy function, and Husimi and Glauber-Sudarshan distribution functions. We do this by showing how they may be obtained from ordered forms of creation and annihilation operators and by obtaining them in terms of expectation values in different eigenbases.