Random cell migration and actin organization in seven human primary, recurrent cutaneous, and metastatic melanoma cell lines were studied by time-lapse video recording and image analysis. The migration of over 800 randomly selected cells from the cell lines were recorded using an inverted microscope with an attached incubator housing. The fraction of cells with random migration rates greater than 10 microns/hour was 8% in an established primary melanoma cell line, 2% and 34% in two recurrent cutaneous melanoma cell lines, and 5%, 30%, 31%, and 60% in four metastatic cell lines. The three metastatic cell lines with significantly higher mean migration rates (P less than 0.001) were derived from lymph node metastases, whereas the fourth metastatic cell line was derived from a visceral metastasis. The cellular morphology and presence of cell nests in the original tissue correlated with in vitro cell morphology and the formation of colonies. The ability of cells to organize actin into stress fibers directly correlated with significantly higher random migration rates and lack of colony formation. Characterization of random migration rates and actin organization of human melanoma cells that are isolated from different stages of tumor progression may lend insight into metastasis.