The nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) triggers adipocyte differentiation by regulating lipogenic genes. A ligand for PPARgamma is necessary to activate PPARgamma function. Fatty acids are potential ligands for PPARgamma activation. The current experiment was designed to determine the potential for individual fatty acids to activate porcine PPARgamma ectopically expressed in myoblasts. The expression of adipocyte fatty acid binding protein (aP2) and adiponectin in myoblasts stably expressing porcine PPARgamma was increased when docosahexaenoic acid (DHA) was added to the adipogenic medium. The response was positively related to DHA concentration and suggests that DHA may bind to and activate porcine PPARgamma, leading to increased expression of aP2 and adiponectin. The conditioned media collected from myoblasts expressing PPARgamma between d 3 and 6 or between d 6 and 9, but not DHA itself, activated the aP2 gene promoter-driven luciferase activity. These results suggest that a metabolite of DHA is the ligand binding to and activating porcine PPARgamma. The metabolite and pathway for its production are currently unknown.