We consider the problem of forecasting the regions at higher risk for newly introduced invasive species. Favourable and unfavourable regions may indeed not be known a priori, especially for exotic species whose hosts in native range and newly-colonised areas can be different. Assuming that the species is modelled by a logistic-like reaction-diffusion equation, we prove that the spatial arrangement of the favourable and unfavourable regions can theoretically be determined using only partial measurements of the population density: (1) a local 'spatio-temporal' measurement, during a short time period and, (2) a 'spatial' measurement in the whole region susceptible to colonisation. We then present a stochastic algorithm which is proved analytically, and then on several numerical examples, to be effective in deriving these regions.