Three-dimensional computer-assisted analysis of graded contusion lesions in the spinal cord of the rat

J Neurotrauma. 1991 Summer;8(2):91-101. doi: 10.1089/neu.1991.8.91.

Abstract

Histological analysis of spinal cord injury in experimental animals has focused primarily on the microanatomy of damaged tissue. The current study presents an analysis of the three-dimensional structure of lesion sites in the spinal cord of rats contused with an injury device which produces consistent lesions. Three levels of injury were produced by systematically varying the cord displacement and the duration of the displacement during impact. The resulting groups of subjects exhibited mild, moderate, and severe neurological deficits. Comparisons of equivalent mild impacts made at thoracic versus lumbar spinal cord levels were also made. The results indicate that the overall shape of the lesions is generally biconical, with extensions in the base of the dorsal funiculus, irrespective of the degree of damage or the spinal level of the injury. Lower displacement injuries yielded shorter lesions rostrocaudally with less spread into the white matter. Similar impacts in the lumbar versus thoracic spinal cord produced shorter, more truncated lesion sites at lumbar levels with less involvement of the white matter than in the thoracic lesions. Three-dimensional analyses can can provide additional information about the lesion beyond that available from conventional histopathological measures. Such information could be useful in assessing the results of posttraumatic manipulations which are directed at reducing tissue damage or tissue replacement via transplantation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Computer Simulation
  • Computers
  • Female
  • Models, Anatomic
  • Models, Neurological
  • Motor Activity
  • Rats
  • Rats, Inbred Strains
  • Spinal Cord / pathology*
  • Spinal Cord / physiopathology
  • Spinal Cord Injuries / pathology*
  • Spinal Cord Injuries / physiopathology