Objective: To investigate the effects of the potent immunosuppressive agent cyclosporin A (CsA) on the proliferation of human endothelial progenitor cells (EPCs) and endothelial nitric oxide synthase (eNOS) expression in EPCs.
Methods and results: The EPCs were obtained from cultured mononuclear cells, which were isolated from the peripheral blood of healthy adults, and stimulated with CsA (10 microg/mL) in the presence or absence of either vascular endothelial growth factor (VEGF; 50 ng/mL) or L-arginine (1 mM). To explore the effect of different concentrations of CsA alone on EPC proliferation, some cells were treated with CsA in a series of final concentrations ranging from 0 to 10 microg/mL. Cell proliferation and apoptosis were determined, respectively, by the Cell Counting Kit-8 assay and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of eNOS was assayed by reverse transcription-polymerase chain reaction analysis while nitric oxide (NO) generation was detected using the Griess method. The effects of CsA on EPC proliferation, apoptosis, and eNOS/NO production were dose dependent in the concentration ranging from 0.1 microg/mL to 10 microg/mL. Treatment with VEGF (50 ng/mL) significantly promoted EPC proliferation and eNOS/NO production, which were completely abrogated by pre-incubation with CsA (10 microg/mL). The supplement of L-arginine (1 mM) promoted NO production that enhanced EPC proliferation and attenuated the effect of CsA on EPC proliferation and apoptosis.
Conclusion: CsA significantly inhibited proliferation, eNOS mRNA expression and NO production of human EPCs, in a dose-dependent manner.