Background: Pancreatic cancer still has one of the worst prognoses of all cancers with a 5-year survival rate of 5%, making it necessary to find markers or gene sets that would further classify patients into different risk categories and thus allow more individually adapted multimodality treatment regimens. Especially heparanase (HPSE) has recently been discussed as a key factor in pancreatic cancer.
Materials and methods: Paraffin-embedded tissue samples were obtained from 41 patients with pancreatic adenocarcinoma who were scheduled for primary surgical resection. Direct quantitative real-time reverse transcriptase polymerase chain reaction (TaqMan) assays were performed in triplicates to determine HPSE, hypoxia inducible factor-1 alpha (HIF1a), platelet-derived growth factor alpha (PDGFA), heparin-binding EGF-like growth factor (HB-EGF), and basic fibroblast growth factor (bFGF) gene expression levels.
Results: HPSE was significantly correlated to PDGFA (p = 0.04) and HIF1a (p = 0.04). The correlation of HIF1a to bFGF and HB-EGF was significant (p = 0.04, p = 0.02). Stepwise multiple linear regression models showed a significant independent association of HPSE with lymph node metastasis (p = 0.025) and with dedifferentiation (p = 0.042).
Conclusions: Heparanase seems to be significantly associated with lymph node metastasis (p = 0.025) as well as dedifferentiation (p = 0.042). We assume that HPSE plays a crucial role for the aggressiveness of pancreatic cancer. Larger studies including more patients seem to be warranted.