DEAD box proteins are a family of putative RNA helicases associated with all aspects of cellular metabolism involving the modification of RNA secondary structure. DDX1 is a member of the DEAD box protein family that is overexpressed in a subset of retinoblastoma and neuroblastoma cell lines and tumors. DDX1 is found primarily in the nucleus, where it forms two to four large aggregates called DDX1 bodies. Here, we report a rapid redistribution of DDX1 in cells exposed to ionizing radiation, resulting in the formation of numerous foci that colocalize with gamma-H2AX and phosphorylated ATM foci at sites of DNA double-strand breaks (DSBs). The formation of DDX1 ionizing-radiation-induced foci (IRIF) is dependent on ATM, which was shown to phosphorylate DDX1 both in vitro and in vivo. The treatment of cells with RNase H prevented the formation of DDX1 IRIF, suggesting that DDX1 is recruited to sites of DNA damage containing RNA-DNA structures. We have shown that DDX1 has RNase activity toward single-stranded RNA, as well as ADP-dependent RNA-DNA- and RNA-RNA-unwinding activities. We propose that DDX1 plays an RNA clearance role at DSB sites, thereby facilitating the template-guided repair of transcriptionally active regions of the genome.