Blood vessels inside tumors are crucial for cancer survival and progression but equally contribute to the tumor's intrinsic resistance to therapy. Abnormal blood flow in the local tumor environment acts as a physiological barrier to the delivery of chemotherapeutic agents. Furthermore, tumor vasculature can also act as a barrier for immune cell migration into the tumor parenchyma. Much has been made of anti-angiogenic therapies that specifically inhibit vessel growth. However, recent findings demonstrate that the chaotic architecture of tumor blood vessels can be reversed which in turn normalizes blood flow and physical parameters in the tumor environment. Importantly, vessel normalization also improves lymphocyte migration into tumor tissue and immune destruction. Identification of regulator of G protein signaling 5 (RGS5) as a key modulator of the vascular barrier in tumor progression and regression has brought new insights into the molecular basis of vessel normalization and opens new therapeutic opportunities.