Purpose: To evaluate the feasibility of using real-time magnetic resonance (MR) fluoroscopic guidance to place a stent-graft mounted on a guide wire in a nonrigid aortic phantom.
Materials and methods: Real-time fast low-angle shot and true fast imaging with steady-state precession MR imaging sequences were used for device tracking. A modified fiber-optic guide wire and catheter embedded with titanium oxide in predefined positions were used for navigation in a homemade silicone thoracic aortic phantom.
Results: Susceptibility artifacts caused by the modified guide wire and catheters mounted in the descending thoracic aorta of the phantom were found to enable adequate determination of the guide wire position in relation to the surrounding anatomy and to cause no image distortion. Real-time MR imaging enabled visualization of both the vessel lumen and the delivery system with the mounted stent-graft, providing an image quality sufficient for successful localization of the lesion and deployment of the stent-graft.
Conclusions: The results of this study prove the possibility of passive guidance in MR imaging-guided stent placement in vitro. The modified guide wire can be used with interventional commercial catheters and recent implant devices with selective tracking in the surrounding anatomy.