Nonionic fluorinated-hydrogenated surfactants for the design of mesoporous silica materials

J Phys Chem B. 2008 Sep 25;112(38):11950-9. doi: 10.1021/jp8035378. Epub 2008 Aug 29.

Abstract

We have investigated the influence of the ratio between the volume of the hydrophilic head (VA) and the volume of the hydrophobic part (VB) of the surfactant on the mesopore ordering. To understand the difference of behavior we have performed a complete study dealing with fluorinated [Rm(F)(EO)n] and hydrogenated [Rm(H)(EO)n] surfactants. Their mixtures have also been taken into account. Here only the phase diagrams and the structural parameters of the liquid crystal phases of the mixed systems are reported. We have shown that the mutual or partial miscibility of the fluorinated and the hydrogenated surfactants depends on the number of oxyethylene units of each surfactant. To follow, various systems were used for the preparation of silica mesoporous materials via a cooperative templating mechanism (CTM). Results clearly reveal that VA/VB ratios in the range between 0.95 and 1.78 lead to the formation of well-ordered mesostructures. Wormhole-like structures are obtained for higher or lower values. Moreover, results show that from the VA/VB point of view, polyoxyethylene fluoroalkyl ether surfactants behave like their hydrogenated analogues.