Onset of chaotic advection in open flows

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016317. doi: 10.1103/PhysRevE.78.016317. Epub 2008 Jul 25.

Abstract

In this paper we investigate the transition to chaos in the motion of particles advected by open flows with obstacles. By means of a topological argument, we show that the separation points on the surface of the obstacle imply the existence of a saddle point downstream from the obstacle, with an associated heteroclinic orbit. We argue that as soon as the flow becomes time periodic, these orbits give rise to heteroclinic tangles, causing passively advected particles to experience transient chaos. The transition to chaos thus coincides with the onset of time dependence in open flows with stagnant points, in contrast with flows with no stagnant points. We also show that the nonhyperbolic nature of the dynamics near the walls causes anomalous scalings in the vicinity of the transition. These results are confirmed by numerical simulations of the two-dimensional flow around a cylinder.