Mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. Here, we report that a mutation in the zebrafish myosin phosphatase targeting subunit 1 (mypt1) gene causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) and endoderm cells. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a-producing cells with respect to the liver primordium leads to a reduction in hepatoblast proliferation and final abortion of hepatoblasts by apoptosis, causing the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish.