Cholesterol is an essential component of eukaryotic cells; at the same time, however, hyperaccumulation of cholesterol is harmful. Therefore, the ABCA1 gene, the product of which mediates secretion of cholesterol, is highly regulated at both the transcriptional and post-transcriptional levels. The transcription of ABCA1 is regulated by intracellular oxysterol concentration via the nuclear liver X receptor (LXR)/retinoid X receptor (RXR); once synthesized, ABCA1 protein turns over rapidly with a half-life of 1-2 h. Here, we show that the LXRbeta/RXR complex binds directly to ABCA1 on the plasma membrane of macrophages and modulates cholesterol secretion. When cholesterol does not accumulate, ABCA1-LXRbeta/RXR localizes on the plasma membrane, but is inert. When cholesterol accumulates, oxysterols bind to LXRbeta, and the LXRbeta/RXR complex dissociates from ABCA1, restoring ABCA1 activity and allowing apoA-I-dependent cholesterol secretion. LXRbeta can exert an immediate post-translational response, as well as a rather slow transcriptional response, to changes in cellular cholesterol accumulation. Thus, we provide the first demonstration that protein-protein interaction suppresses ABCA1 function. Furthermore, we show that LXRbeta is involved in both the transcriptional and post-transcriptional regulation of the ABCA1 transporter.