Polarimetric measurements are designed to obtain information pertaining to the system under study, however noise in the system limits the precision and hence information obtainable. Exploitation of a priori knowledge of the system allows for an improvement in the precision of experimental data. In this vein we present a framework for system design and optimisation based upon the Fisher information matrix, which allows easy incorporation of such a priori information. As such the proposed figure of merit is more complete than the commonly used condition number. Conditions of equivalence are considered, however a number of examples highlight the failings of the condition number under more general scenarios. Bounds on the achievable informational gains via multiple polarimeter arms are also given. Finally we present analytic results concerning error distribution in a Mueller matrix polar decomposition, allowing for a more accurate noise analysis in polarimetric experiments.