Malassezia yeasts are part of the cutaneous microflora commonly found on animals and human and may sometimes cause various opportunistic skin diseases. As most of Malassezia species show lipid-dependency, lipolytic enzymes such as lipase and phospholipase are necessary for them to obtain useful lipids from the environment. Consequently, these enzymes are thought to play an important role in the growth and pathogenicity of Malassezia. Here we analyze and compare extracellular lipase and phospholipase activities of several Malassezia species cultivated under common growth conditions. M. globosa showed the highest lipase activity of all of the Malassezia species included in our studies. The lipid-independent M. pachydermatis also showed high lipase and phospholipase activity. These results indicate that this Malassezia species are capable of utilizing lipids well in contrast to the other lipid-dependent species of the genus. Our data suggest that lipase may be a pathogenic factor in the skin disease associated with Malassezia and provide an explanation as to why M. globosa is an important pathogenic species in several human skin diseases despite its slow rate of growth.