Investigation of the metabolites of (S,S)-[(11)C]MeNER in humans, monkeys and rats

Mol Imaging Biol. 2009 Jan-Feb;11(1):23-30. doi: 10.1007/s11307-008-0175-y. Epub 2008 Sep 18.

Abstract

Introduction: (S,S)-[(11)C]MeNER ((S,S)-2-(alpha-(2-[(11)C]methoxyphenoxy)benzyl)morpholine) is a positron emission tomography (PET) radioligand recently applied in clinical studies of norepinephrine transporters (NETs) in the human brain in vivo. In view of further assessment of the suitability of (S,S)-[(11)C]MeNER as a NET radioligand, its metabolism and the identity of the in vivo radiometabolites of (S,S)-[(11)C]MeNER are of great interest.

Materials and methods: Thus, PET studies were used to measure brain dynamics of (S,S)-[(11)C]MeNER, and plasma reverse-phase radiochromatographic analysis was performed to monitor and quantify its rate of metabolism. Eighteen healthy human volunteers, five cynomolgus monkeys, and five rats were studied.

Results and discussion: In human subjects, the plasma radioactivity representing (S,S)-[(11)C]MeNER decreased from 88 +/- 5% at 4 min after injection to 82 +/- 7% at 40 min, while a polar radiometabolite increased from 3 +/- 3% to 16 +/- 7% at the same time-points, respectively. A more lipophilic radiometabolite than (S,S)-[(11)C]MeNER decreased from 9 +/- 5% at 4 min to 1 +/- 2% at 40 min. In monkeys, plasma radioactivity representing (S,S)-[(11)C]MeNER decreased from 97 +/- 2% at 4 min to 74 +/- 7% at 45 min, with a polar fraction as the major radiometabolite. A more lipophilic radiometabolite than (S,S)-[(11)C]MeNER, constituted 3 +/- 2% of radioactivity at 4 min and was not detectable later on. In rats, 17 +/- 4% of plasma radioactivity was parent radioligand at 30 min with the remainder comprising mainly a polar radiometabolite. (S,S)-[(11)C]MeNER in rat brain and urine at 30 min after injection were 90% and 4%, respectively. On a brain regional level, parent radioligand ranged from 87.5 +/- 3.9% (57.2 +/- 14.2% SUV [standard uptake values, %injected radioactivity per mL multiplied with animal weight (in g)]; cerebellum) to 92.9 +/- 1.8% (36.1 +/- 4.7% SUV; striatum), with differential distribution of the radiometabolite in the cerebellum (6.7 +/- 0.3% SUV) and the striatum (2.5 +/- 0.3% SUV). Liquid chromatography-mass spectrometry analysis of rat urine identified a hydroxylation product of the methoxyphenoxy ring of (S,S)-MeNER as the main metabolite. In the brain, the corresponding main metabolite was the product from O-de-methylation of (S,S)-MeNER. PET measurements were performed in rats as well as in wild-type and P-gp-knock-out mice. In rats, the brain peak level of radioactivity was found to be very low (65%SUV). In mice, there was only a small difference in peak brain accumulation between P-gp knock-out and wild-type mice (145 vs. 125%SUV) with the following rank order of regional brain radioactivity: cerebellum x thalamus > cortical regions > striatum.

Conclusion: It can be concluded that radiometabolites of (S,S)-[(11)C]MeNER are of minor importance in rat and monkey brain imaging. The presence of a transient lipophilic radiometabolite in peripheral human plasma may induce complications with brain imaging, but its kinetics appear favorable in relation to the slow kinetics of (S,S)-[(11)C]MeNER in humans.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Blood / diagnostic imaging
  • Blood / metabolism
  • Brain / diagnostic imaging
  • Brain / metabolism
  • Chromatography, Liquid
  • Humans
  • Isotope Labeling / methods
  • Kinetics
  • Macaca fascicularis
  • Male
  • Mass Spectrometry
  • Mice
  • Mice, Knockout
  • Norepinephrine Plasma Membrane Transport Proteins / metabolism*
  • Positron-Emission Tomography
  • Radiopharmaceuticals / blood
  • Radiopharmaceuticals / metabolism*
  • Radiopharmaceuticals / urine
  • Rats
  • Rats, Sprague-Dawley
  • Thalamus / diagnostic imaging
  • Thalamus / metabolism
  • Tissue Distribution

Substances

  • Norepinephrine Plasma Membrane Transport Proteins
  • Radiopharmaceuticals