It remains unresolved how different BCR-ABL transcripts differentially drive lymphoid and myeloid proliferation in Philadelphia chromosome-positive (Ph(+)) leukemias. We compared BCR-ABL transcript type and level with kinase domain (KD) mutation status, genotype, and phenotype in 1855 Ph(+) leukemias. Compared with e1a2/p190 BCR-ABL cases, de novo e13-e14a2/p210 Ph(+) lymphoid leukemia more frequently showed CML-type background, had higher blast-normalized BCR-ABL transcript levels, and more frequent persistent BCR-ABL transcript in the absence of detectable lymphoblasts. Secondary lymphoid blast transformation of CML was exclusively due to e13/e14a2/p210 BCR-ABL but was associated, at a much higher level than p210 myeloid transformation, with acquisition of new KD mutations and/or Ph genomic amplification. In contrast, myeloid blast transformation was more frequently accompanied by new acquisition of acute myeloid leukemia-type chromosomal aberrations, particularly involving the EVI1 and RUNX1 loci. Therefore, higher kinase activity by mutation, transcriptional up-regulation or gene amplification appears required for lymphoid transformation by p210 BCR-ABL.