Under the hypothesis of obesity as a polygenetic disease numerous genes have been associated with an obese phenotype and metabolic co-morbidities. The cannabinoid receptor 1 (CB 1) is part of an underinvestigated system that participates in appetite control. Previous publications suggest that the endocannabinoid systems interact with the better understood leptin-melanocortin axis. Neuropeptide Y (NPY) is a player in the latter. Finally resistin has been shown to influence NPY expression in the brain. In a cohort of 1721 caucasion men and women with a BMI of 25kg/m(2) or more we therefore investigated three candidate polymorphisms at baseline and following 3 months low fat caloric restriction diet by polymerase chain reaction and restriction digestion: the 1359 G/A variant of the cannabinoid receptor 1 (CB1), the L7P variation in neuropeptide Y (NPY) and the -420C>G polymorphism in resistin. Comparing groups according to genotype for each gene separately revealed significant results at baseline only for the CB1 gene. However, upon dieting significant data was found for all 3 genes. Carriers of at least one A allele in CB1 lost more weight and reduced LDL cholesterol more than wildtype patients. LL homocygotes in NPY had a greater reduction in glucose, triglycerides, and LDL cholesterol whereas in resistin carriers of the G allele had a greater reduction in weight and triglycerides. Creating two groups defined by NPY and resistin genotype, respectively, with similar BMI values resulted in significant differences concerning weight loss and metabolic improvement. In conclusion, genetic polymorphisms associated with obesity may become relevant only under the condition of a low calory diet. The presence of a certain genotype may then be beneficial for obesity treatment.