Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires

Nano Lett. 2008 Nov;8(11):3973-7. doi: 10.1021/nl802497e. Epub 2008 Sep 30.

Abstract

Using a two-end bonded ZnO piezoelectric-fine-wire (PFW) (nanowire, microwire) on a flexible polymer substrate, the strain-induced change in I-V transport characteristic from symmetric to diode-type has been observed. This phenomenon is attributed to the asymmetric change in Schottky-barrier heights at both source and drain electrodes as caused by the strain-induced piezoelectric potential-drop along the PFW, which have been quantified using the thermionic emission-diffusion theory. A new piezotronic switch device with an "on" and "off" ratio of approximately 120 has been demonstrated. This work demonstrates a novel approach for fabricating diodes and switches that rely on a strain governed piezoelectric-semiconductor coupling process.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electrons*
  • Lasers, Semiconductor*
  • Zinc Oxide / chemistry*

Substances

  • Zinc Oxide