PET imaging is a powerful tool for measuring physiological changes in the brain during deep brain stimulation (DBS). In this work, we acquired five PET scans using a highly selective D2/D3 dopamine antagonist, 18F-fallypride, to track changes in dopamine receptor availability, as measured by the distribution volume ratio (DVR), through the course of DBS in the bed nucleus of the stria terminalis (BNST) in a nonhuman primate.
Methods: PET scans were performed on a rhesus monkey with unilateral BNST stimulation during periods of baseline, chronic high frequency (130 Hz) and low frequency (50 Hz) DBS stimulation, and during a washout period between stimulation periods. A final scan was performed with the electrode stimulation starting 110 min into the scan. Whole brain parametric images of (18)F-fallypride DVR were calculated for each condition to track changes in both striatal and extrastriatal D2/D3 availability.
Results: The monkey displayed significant increases in receptor binding throughout the brain during DBS relative to baseline for 130 and 50 Hz, with changes in DVR of: caudate 42%, 51%; putamen 56%, 57%; thalamus 33%, 49%; substantia nigra 29%, 26%; and prefrontal cortex 28%, 56%, respectively. Washout and post-stimulation scans revealed DVR values close to baseline values. Activating the stimulator midway through the final scan resulted in no statistically significant changes in binding.
Conclusions: PET neuroligand imaging has demonstrated the sensitivity to track changes in dopamine D2/D3 binding during the course of DBS. These methods show great potential for providing insight into the neurochemical consequences of DBS.