The terminal organelle is a differentiated structure that plays a key role in mycoplasma cytadherence and locomotion. For this reason, the analysis of Mycoplasma genitalium mutants displaying anomalous terminal organelles could improve our knowledge regarding the structural elements required for proper locomotion. In this study, we isolated several M. genitalium mutants having transposon insertions within the mg218 or mg317 genes, which encode the orthologues of Mycoplasma pneumoniae HMW2 and HMW3 cytoskeletal proteins, respectively. As expected, mg218(-) and mg317(-) mutants exhibit a reduced gliding motility, although their ability to attach to solid surfaces was not completely abolished. Interestingly, most of the mg218(-) mutants expressed N-terminal MG218 derivatives and showed the presence of short terminal organelles retaining many of the functions displayed by this structure in the wild-type strain, suggesting that the N-terminal region of this protein is an essential element in the architecture of the terminal organelle. Separately, the analysis of mg317(-) mutants indicates that MG317 protein is involved in the formation of the terminal button and contributes to anchoring the electron-dense core to the cell membrane. The results presented here clearly show that MG218 and MG317 proteins are implicated in the maintenance of gliding motility and cytadherence in M. genitalium.