Connexins in vascular physiology and pathology

Antioxid Redox Signal. 2009 Feb;11(2):267-82. doi: 10.1089/ars.2008.2115.

Abstract

Cellular interaction in blood vessels is maintained by multiple communication pathways, including gap junctions. They consist of intercellular channels ensuring direct interaction between endothelial and smooth muscle cells and the synchronization of their behavior along the vascular wall. Gap-junction channels arise from the docking of two hemichannels or connexons, formed by the assembly of six connexins, and achieve direct cellular communication by allowing the transport of small metabolites, second messengers, and ions between two adjacent cells. Physiologic variations in connexin expression are observed along the vascular tree, with most common connexins being Cx37, Cx40, and Cx43. Changes in the level of expression of connexins have been correlated to the development of vascular disease, such as hypertension, atherosclerosis, or restenosis. Recent studies on connexin-deficient mice highlighted key roles of these communication pathways in the development of these pathologies and confirmed the need for targeted pharmacologic approaches for their prevention and treatment. The aim of this issue is to review the current knowledge on the implication of gap junctions in vascular function and most common cardiovascular diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Communication
  • Connexins / genetics
  • Connexins / metabolism*
  • Connexins / physiology*
  • Endothelium, Vascular / metabolism*
  • Endothelium, Vascular / physiopathology
  • Gap Junctions / metabolism
  • Gap Junctions / physiology
  • Humans
  • Mice
  • Muscle, Smooth, Vascular / metabolism*
  • Muscle, Smooth, Vascular / physiopathology
  • Vascular Diseases / metabolism
  • Vascular Diseases / pathology

Substances

  • Connexins