Exact computation of image disruption under reflection on a smooth surface and Ronchigrams

Appl Opt. 2008 Oct 10;47(29):5500-18. doi: 10.1364/ao.47.005500.

Abstract

We use geometrical optics and the caustic-touching theorem to study, in an exact way, the change in the topology of the image of an object obtained by reflections on an arbitrary smooth surface. Since the procedure that we use to compute the image is exactly the same as that used to simulate the ideal patterns, referred to as Ronchigrams, in the Ronchi test used to test mirrors, we remark that the closed loop fringes commonly observed in the Ronchigrams when the grating, referred to as a Ronchi ruling, is located at the caustic place are due to a disruption of fringes, or, more correctly, as disruption of shadows corresponding to the ruling bands. To illustrate our results, we assume that the reflecting surface is a spherical mirror and we consider two kinds of objects: circles and line segments.