Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas

Genome Biol. 2008 Oct 13;9(10):R150. doi: 10.1186/gb-2008-9-10-r150.

Abstract

Background: Amplified MYCN oncogene resulting in deregulated MYCN transcriptional activity is observed in 20% of neuroblastomas and identifies a highly aggressive subtype. In MYCN single-copy neuroblastomas, elevated MYCN mRNA and protein levels are paradoxically associated with a more favorable clinical phenotype, including disseminated tumors that subsequently regress spontaneously (stage 4s-non-amplified). In this study, we asked whether distinct transcriptional MYCN or c-MYC activities are associated with specific neuroblastoma phenotypes.

Results: We defined a core set of direct MYCN/c-MYC target genes by applying gene expression profiling and chromatin immunoprecipitation (ChIP, ChIP-chip) in neuroblastoma cells that allow conditional regulation of MYCN and c-MYC. Their transcript levels were analyzed in 251 primary neuroblastomas. Compared to localized-non-amplified neuroblastomas, MYCN/c-MYC target gene expression gradually increases from stage 4s-non-amplified through stage 4-non-amplified to MYCN amplified tumors. This was associated with MYCN activation in stage 4s-non-amplified and predominantly c-MYC activation in stage 4-non-amplified tumors. A defined set of MYCN/c-MYC target genes was induced in stage 4-non-amplified but not in stage 4s-non-amplified neuroblastomas. In line with this, high expression of a subset of MYCN/c-MYC target genes identifies a patient subtype with poor overall survival independent of the established risk markers amplified MYCN, disease stage, and age at diagnosis.

Conclusions: High MYCN/c-MYC target gene expression is a hallmark of malignant neuroblastoma progression, which is predominantly driven by c-MYC in stage 4-non-amplified tumors. In contrast, moderate MYCN function gain in stage 4s-non-amplified tumors induces only a restricted set of target genes that is still compatible with spontaneous regression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Disease Progression
  • Gene Expression Regulation, Neoplastic
  • Genes, myc
  • N-Myc Proto-Oncogene Protein
  • Neuroblastoma / genetics*
  • Neuroblastoma / pathology*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Oncogene Proteins / genetics
  • Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • Survival Analysis
  • Transcription, Genetic*
  • Tumor Cells, Cultured

Substances

  • MYC protein, human
  • MYCN protein, human
  • N-Myc Proto-Oncogene Protein
  • Nuclear Proteins
  • Oncogene Proteins
  • Proto-Oncogene Proteins c-myc