Objectives: In the present study, the metabolism of steroid hormones has been investigated to determine whether and how xenobiotics like lead (Pb) and polychlorinated biphenyls (PCBs) interfere with steroid hormone biotransformation in humans.
Methods: Three groups of subjects were tested for concentration of urinary total steroids, 17-ketosteroids (n = 5), pregnane derivates (n = 6), 17-hydroxycorticosteroids (n = 11) and their sulfonated compounds: 14 workers exposed to lead, with a mean Pb blood concentration (PbB) of 29.21 microg/dl; 15 subjects exposed to PCBs, with a mean PCB blood concentration (PCBB) of 61.69 microg/l; a control group (n = 25).
Results: The urinary concentrations of 17-ketosteroids and 17-hydroxycorticosteroids were significantly lower in the PCB-exposed groups. There were significantly fewer sulfonated 17-hydroxycorticosteroids in the subjects exposed to PCBs as compared to the controls, while the percentage of sulfonated steroids was lower for both 17-ketosteroids and 17-hydroxycorticosteroids in the PCB-exposed subjects, but only for the 17-hydroxycorticosteroids in the group of subjects exposed to Pb (P < 0.05). Pregnane derivate urinary concentrations did not differ between the three groups.
Conclusion: Our results suggest that PCBs and Pb act on steroid hormone metabolism with different effects and only partially using the same hormone pathways; they may cause changes in endogenous hormone homeostasis and interfere with the xenobiotic phase II of detoxification. PCBs interfere on a larger number of steroids and cause more significant effects than Pb. It is likely that different mechanisms are involved in steroid hormone metabolism interference.