The effect of a pharmacologic increase in serotonin concentrations on striatal dopamine (D2) receptor availability has been measured in several studies using positron emission tomography (PET) and the radiotracer [11C]-raclopride as a method for the in vivo imaging of serotonin modulation of striatal dopamine in human subjects. These studies have shown that an acute increase in serotonin concentrations produced a decrease in striatal D2 receptor availability. The current study was undertaken to measure the effects of a more pharmacologically selective serotonergic agent compared to previous studies, the serotonin reuptake inhibitor, citalopram, on striatal D2 receptor availability. Twelve healthy control subjects underwent two PET scans performed on the same day following i.v. administration of saline (Scan 1) and citalopram (Scan 2, 40 mg, i.v.). The [11C]-raclopride data were analyzed with a graphical analysis method using the cerebellum as the input function. Plasma levels of citalopram, cortisol, and prolactin were measured. The citalopram concentrations peaked at the end of infusion (EOI) and remained relatively consistent from 30 min to 3 h postinfusion. An increase in cortisol and prolactin concentrations was observed from the EOI until 60 min after the EOI. A significant decrease in striatal D2 receptor availability was observed after citalopram infusion (-5%), presumably due to an increase in endogenous dopamine concentrations. In summary, i.v. administration of the selective serotonin reuptake inhibitor, citalopram, produced modest reductions in striatal D2 receptor availability, consistent with other human [11C]-raclopride studies using less pharmacologically selective serotonergic agents.