Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay

Biophys J. 2008 Dec 15;95(12):5820-31. doi: 10.1529/biophysj.108.140319. Epub 2008 Oct 17.

Abstract

The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and biological role of these sideways forces is not known. Here we adapt an actin gliding filament assay to measure the rotation of an actin filament about its axis ("twirling") as it is translocated by myosin. We quantify the rotation by determining the orientation of sparsely incorporated rhodamine-labeled actin monomers, using polarized total internal reflection microscopy. To determine the handedness of the filament rotation, linear incident polarizations in between the standard s- and p-polarizations were generated, decreasing the ambiguity of our probe orientation measurement fourfold. We found that whole myosin II and myosin V both twirl actin with a relatively long (approximately 1 microm), left-handed pitch that is insensitive to myosin concentration, filament length, and filament velocity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins / metabolism*
  • Animals
  • Biomechanical Phenomena
  • Cattle
  • Microscopy, Fluorescence
  • Movement*
  • Myosin Type II / metabolism*
  • Myosin Type V / metabolism*
  • Rabbits

Substances

  • Actins
  • Myosin Type II
  • Myosin Type V