Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers

Analyst. 2008 Nov;133(11):1550-5. doi: 10.1039/b719810h. Epub 2008 Jul 28.

Abstract

We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, interleukin-6 (IL-6), on a microarray format. The tris(2,2'-bipyridyl)ruthenium(ii) chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as the surfactant, therefore, no requirement of cosolvent during the synthesis and the particle size was reduced comparing to the commonly used Triton surfactant system. The nanoparticles are uniform in size with a diameter of 50 nm. The microarray fluorescent immunoassay approach based on dye-doped silica nanoparticle labels has high sensitivity for practical applications with a limit of detection for IL-6 down to 0.1 ng mL(-1). The calibration curve is linear over the range from 0.1 ng mL(-1) to 10 ng mL(-1). Furthermore, results illustrated that the assay is highly specific for IL-6 in the presence of range of cytokines or proteins. The RuDS dye-labeled nanoparticles in connection with protein microarrays show the promise for clinical diagnosis of biomarkers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomarkers / analysis
  • Fluorescent Dyes
  • Humans
  • Immunoassay / methods
  • Interleukin-6 / analysis*
  • Nanoparticles
  • Nanotechnology
  • Protein Array Analysis / methods*
  • Silicon Dioxide

Substances

  • Biomarkers
  • Fluorescent Dyes
  • Interleukin-6
  • Silicon Dioxide