The stepwise modifications of stoichiometric mixtures of titanium chloride (TiCl 4) and titanium iso-propoxide (Ti(OPr (i)) 4) by 2-pyridine methanol (H-OPy) led to the isolation of a systematically varied, novel family of compounds. The 3:1 reaction mixture of Ti(OPr (i)) 4:TiCl 4 yielded [Cl(OPr (i)) 2Ti(mu-OPr (i))] 2 ( 1). Modification of 1 with 1 and 2 equiv of H-OPy produced [Cl(OPr (i)) 2Ti(mu c-OPy)] 2 ( 2, where mu c = chelating bridge) and "(OPy) 2TiCl(OPr (i))" ( 3, not crystallographically characterized), respectively. Altering the Ti(OPr (i)) 4 to TiCl 4 stoichiometry to 1:1 led to isolation and identification of another dimeric species [Cl 2(OPr (i))Ti(mu-OPr (i))] 2 ( 4). Upon modification with 1 equiv of H-OPy, [Cl 2(OPr (i))Ti(mu c-OPy)] 2 ( 5) was isolated from toluene and (OPy)TiCl 2(OPr (i))(py) ( 6) from py. An additional equivalent of H-OPy led to the monomeric species (OPy) 2TiCl 2 ( 7). Because of the low solubility and similarity in constructs of these compounds, additional analytical data, such as the beryllium dome or BeD-XRD powder analyses, were used to verify the bulk samples, which were found to be in agreement with the single crystal structures.