To improve the differentiation of thalassemia intermedia from other hemoglobinopathies in Iran, four known genetic mechanisms-XmnI (G)gamma polymorphism, inheritance of mild and silent beta-thalassemia alleles, delta beta deletion, and coinheritance of alpha- and beta-thalassemia-were investigated in 52 Iranian individuals suspected to have thalassemia intermedia based on clinical and hematological characteristics. Beta-globin mutations were studied using a reverse-hybridization assay and sequencing of the total beta-globin gene. The XmnI (G)gamma polymorphism, the Sicilian delta beta deletion, and four alpha-globin mutations (-a(3.7), -a(4.2), -(MED), aaa(anti-3.7)) were studied using PCR-based techniques. The inheritance of the XmnI (G)gamma polymorphism with severe beta-thalassemia alleles in the homozygous or compound heterozygous state was the predominant mechanism observed in 27 individuals (55.3%). In five cases, this status overlapped with the -a(3.7)/aa genotype. The second most frequent cause for thalassemia intermedia (14.8%) was the inheritance of mild beta-thalassemia alleles, including IVS-I-6 (T > C), -88 (C > A), and + 113 (A > G). In three subjects (4.3%) the Sicilian delta beta deletion was identified. HbS in association with beta-zero-thalassemia was found in three patients with thalassemia intermedia phenotype. In 11 cases (21.3%) no causative genetic alteration could be identified. Our results reflect the diversity underlying thalassemia intermedia, and the limitations of the applied clinical, hematological, and molecular approaches for correct diagnosis. Some of the unresolved cases will offer an opportunity to discover additional molecular mechanisms leading to thalassemia intermedia.