Interspecies binding is important in the colonization of the oral cavity by bacteria. Streptococcus mutans can adhere to other plaque bacteria, such as Streptococcus sanguis and Actinomyces viscosus, and this adherence is enhanced by saliva. The salivary and bacterial molecules that mediate this interaction were investigated. Salivary agglutinin, a mucinlike glycoprotein known to mediate the aggregation of many oral streptococci in vitro, was found to mediate the adherence of S. mutans to S. sanguis or A. viscosus. Adherence of S. mutans to saliva- or agglutinin-coated S. sanguis and A. viscosus was inhibited by antibodies to the bacterial agglutinin receptor. Expression of the S. sanguis receptor (SSP-5) gene in Enterococcus faecalis increased adhesion of this organism to saliva- or agglutinin-coated S. sanguis and A. viscosus. This interaction could be inhibited by antibodies to the agglutinin receptor. The results suggest that salivary agglutinin can promote adherence of S. mutans to S. sanguis and A. viscosus through interactions with the agglutinin receptor on S. mutans.