Interleukin-6 (IL-6) plays a crucial role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). It exerts its cellular effects by a membrane-bound IL-6 receptor (IL-6R), or, alternatively, by forming a complex with the soluble IL-6R (sIL-6R), a process named IL-6 transsignalling. Here we investigate the role of IL-6 transsignalling in myelin basic protein (MBP)-induced EAE in the Lewis rat. In vivo blockade of IL-6 transsignalling by the injection of a specifically designed gp130-Fc fusion protein significantly delayed the onset of adoptively transferred EAE in comparison to control rats injected with PBS or isotype IgG. Histological evaluation on day 3 after immunization revealed reduced numbers of T cells and macrophages in the lumbar spinal cord of gp130-Fc treated rats. At the same time, blockade of IL-6 transsignalling resulted in a reduced expression of vascular cell adhesion molecule-1 on spinal cord microvessels while experiments in cell culture failed to show a direct effect on the regulation of endothelial adhesion molecules. In experiments including active EAE and T cell culture, inhibition of IL-6 transsignalling mildly increased T cell proliferation, but did not change severity of active MBP-EAE or regulate Th1/Th17 responses. We conclude that IL-6 transsignalling may play a role in autoimmune inflammation of the CNS mainly by regulating early expression of adhesion molecules, possibly via cellular networks at the blood-brain barrier.