Background & aims: Prophylactic treatment of mice with CpG motifs of bacterial DNA protects from experimental inflammatory bowel disease, at least partly via induction of inhibitory T-cells. The aim of this study was to elucidate whether these CpG-dependent protective effects require presence of bacterial flora suggesting antigen-specific regulatory activity.
Methods: Germ-free BALB/c and IL-10(-/-) mice were treated with CpG-oligodeoxynucleotides (ODN), control-ODN, or PBS. CD4(+)CD62L(+) cells of these mice were transferred into SCID recipients. CpG-ODN-treated germ-free IL-10(-/-) mice were transferred into colitogenic environment. Monoclonal antibodies were used to neutralize TGF-beta and IFN-alpha/beta during CpG-ODN treatment. CD4(+)CD62L(+) cells of donors were evaluated for cytokine secretion and FOXP3, PD-1, and CD25 expression.
Results: Compared to PBS or control-ODN treatment, CpG-ODN application to germ-free donors led to decreased intestinal inflammation as indicated by histology, decreased proinflammatory cytokines, and increased IL-10 secretion. Protection was also observed after cotransfer of cells from PBS and CpG-ODN treated donors. Anti-TGF-beta and anti-INF-alpha/beta partly reversed the protective CpG-ODN effect. CpG-ODN-treated germ-free IL-10(-/-) mice transferred into colitogenic environment developed significantly less colitis than controls but not recipients of IL-10(-/-)CD4(+)CD62L(+)cells. CD4(+)CD62L(+)cells of CpG-treated germ-free animals displayed increased expression of regulatory markers.
Conclusions: Even without pre-existence of bacterial flora CpG-ODN exposition induces tolerance, indicating that CpG-ODN-induced regulatory T-cells are not bacterial antigen specific. TGF-beta and IFN-alpha/beta play major roles in induction of regulatory cells, and although IL10-independent mechanisms play a role in CpG-ODN protection, this cytokine likely is important for the effector mechanism of CpG-ODN-induced regulatory T-cells.