Salicylic acid, which is biosynthesized inside plant and is often found and accumulated in soil due to plant debris decaying, is considered as a signaling substance during plant-microbe interactions. It is involved in the cycling of biogeochemistry and related to plant resistance to biotic and abiotic stress. The antibiotic effect of salicylic acid on Fusarium oxysporum f.sp.niveum (FON) was studied to investigate the relationships between the salicylic acid and the fungus in the ecological interaction of plant-microbe. Results showed that the biomass, colony diameter, number of conidium germination and conidium production of FON were decreased by 52.0%, 25.7%, 100% and 100% at concentrations of 800 mg L(-1). However, mycotoxin yield was increased by 233%, pectinase activity raised by 168.0% and cellulase activity increased by 1325% compared to control at higher concentrations. It was concluded that salicylic acid as an allelochemical greatly inhibited FON growth and conidia formation and germination, though stimulated mycotoxin production and activities of hydrolytic enzymes by FON.