Amperometric determination of bonded glucose with an MnO(2) and glucose oxidase bulk-modified screen-printed electrode using flow-injection analysis

Talanta. 2005 Jan 30;65(2):559-64. doi: 10.1016/j.talanta.2004.07.023. Epub 2004 Sep 29.

Abstract

A screen-printed amperometric biosensor based on carbon ink double bulk-modified with MnO(2) as a mediator and glucose oxidase as a biocomponent was investigated for its ability to serve as a detector for bonded glucose in different compounds, such as cellobiose, saccharose, (-)-4-nitrophenyl-beta-d-glucopyranoside, as well as in beer samples by flow-injection analysis (FIA). The biosensor could be operated under physiological conditions (0.1M phosphate buffer, pH 7.5) and exhibited good reproducibility and stability. Bonded glucose was released with glucosidase in solution, and the free glucose was detected with the modified screen-printed electrode (SPE). The release of glucose by the aid of glucosidase from cellobiose, saccharose and (-)-4-nitrophenyl-beta-d-glucopyranoside in solution showed that stoichiometric quantities of free glucose could be monitored in all three cases. The linear range of the amperometric response of the biosensor in the FIA-mode flow rate 0.2mLmin(-1), injection volume 0.25mL, operation potential 0.48V versus Ag/AgCl) extends from 11 to 13,900mumolL(-1) glucose in free form. The limit of detection (3sigma) is 1mumolL(-1) glucose. A concentration of 100mumolL(-1) yields a relative standard deviation of approximately 7% with five injections. These values correspond to the same concentrations of bonded glucose supposed that it is liberated quantitatively (incubation for 2h with glucosidase). Bonded glucose could be determined in beer samples using the same assay. The results corresponded very well with the reference procedure.