Design, synthesis, and biological evaluation of novel C14-C3'BzN-linked macrocyclic taxoids

J Org Chem. 2008 Dec 19;73(24):9584-93. doi: 10.1021/jo801713q.

Abstract

Novel macrocyclic paclitaxel congeners were designed to mimic the bioactive conformation of paclitaxel. Computational analysis of the "REDOR-Taxol" structure revealed that this structure could be rigidified by connecting the C14 position of the baccatin moiety and the ortho position of C3'N-benzoyl group (C3'BzN), which are ca. 7.5 A apart, with a short linker (4-6 atoms). 7-TES-14beta-allyloxybaccatin III and (3R,4S)-1-(2-alkenylbenzoyl)-beta-lactams were selected as key components, and the Ojima-Holton coupling afforded the corresponding paclitaxel-dienes. The Ru-catalyzed ring-closing metathesis (RCM) of paclitaxel-dienes gave the designed 15- and 16-membered macrocyclic taxoids. However, the RCM reaction to form the designed 14-membered macrocyclic taxoid did not proceed as planned. Instead, the attempted RCM reaction led to the occurrence of an unprecedented novel Ru-catalyzed diene-coupling process, giving the corresponding 15-membered macrocyclic taxoid (SB-T-2054). The biological activities of the novel macrocyclic taxoids were evaluated by tumor cell growth inhibition (i.e., cytotoxicity) and tubulin-polymerization assays. Those assays revealed high sensitivity of cytotoxicity to subtle conformational changes. Among the novel macrocyclic taxoids evaluated, SB-T-2054 is the most active compound, which possesses virtually the same potency as that of paclitaxel. The result may also indicate that SB-T-2054 structure is an excellent mimic of the bioactive conformation of paclitaxel. Computational analysis for the observed structure-activity relationships is also performed and discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents, Phytogenic / chemical synthesis*
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Cell Line, Tumor
  • Crystallography, X-Ray
  • Drug Design
  • Drug Screening Assays, Antitumor
  • Humans
  • Indicators and Reagents
  • Macrocyclic Compounds / chemical synthesis*
  • Macrocyclic Compounds / pharmacology
  • Magnetic Resonance Spectroscopy
  • Microscopy, Electron
  • Microtubules / chemistry
  • Models, Molecular
  • Molecular Conformation
  • Taxoids / chemical synthesis*
  • Taxoids / pharmacology
  • Tubulin / chemical synthesis
  • Tubulin / chemistry

Substances

  • Antineoplastic Agents, Phytogenic
  • Indicators and Reagents
  • Macrocyclic Compounds
  • Taxoids
  • Tubulin