The objectives of this study were to measure the relative attenuation properties of the left and right ventricles in fetal pig hearts and to compare the spatial variation in attenuation measurements with those observed in previously published backscatter measurements. Approximately 1.0-mm-thick, short-axis slices of excised, formalin-fixed heart were examined from 15 midgestational fetal pigs using a 50-MHz single-element transducer. Measurements of the attenuation properties demonstrate regional differences in the left and right ventricular myocardium that appear consistent with the previously reported regional differences in apparent integrated backscatter measurements of the same fetal pig hearts. For regions of perpendicular insonification relative to the myofiber orientation, the right ventricular free wall showed larger values for the slope of the attenuation coefficient from 30-60 MHz (1.48 +/- 0.22 dB/(cm x MHz) (mean +/- SD) and attenuation coefficient at 45 MHz (46.3 +/- 7.3 dB/cm [mean +/- SD]) than the left ventricular free wall (1.18 +/- 0.24 dB/(cm x MHz) and 37.0 +/- 7.9 dB/cm (mean +/- SD) for slope of attenuation coefficient and attenuation coefficient at 45 MHz, respectively). This attenuation study supports the hypothesis that intrinsic differences in the myocardium of the left and right ventricles exist in fetal pig hearts at midgestation.