Tryptophan (Trp) is an essential amino acid required not only for protein synthesis but also for the production of many plant metabolites, including the hormone auxin. Mutations that disrupt Trp biosynthesis result in various developmental defects in plant organs, but how Trp affects organ growth and development remains unclear. Here, we identify an Arabidopsis mutant, small organ1 (smo1/trp2-301), which exhibits a reduction in the size of its aerial organs as a result of the retardation of growth by cell expansion, rather than by the retardation of growth by cell proliferation. smo1/trp2-301 contains a lesion in TSB1 that encodes a predominantly expressed Trp synthase beta-subunit, and is allelic with trp2 mutants. Further analyses show that in trp2 leaf cells, the nuclear endoreduplication is impaired and chloroplast development is delayed. Furthermore, cell expansion and leaf growth in trp2 can be restored by the exogenous application of Trp, but not by auxin, and the general protein synthesis is not apparently affected in trp2 mutants. Our findings suggest that the deficiency in Trp or its derivatives is a growth-limiting factor for cell expansion during plant organogenesis.