Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum

Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17408-13. doi: 10.1073/pnas.0809013105. Epub 2008 Nov 6.

Abstract

The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cytosol / metabolism*
  • Electrophoresis, Polyacrylamide Gel
  • Endoplasmic Reticulum / metabolism*
  • HSC70 Heat-Shock Proteins / metabolism*
  • HSP90 Heat-Shock Proteins / metabolism
  • HeLa Cells
  • Humans
  • Molecular Chaperones / metabolism*
  • Protein Conformation
  • Ribosomes / metabolism
  • Ricin / metabolism*
  • Ricin / toxicity
  • Ubiquitination

Substances

  • HSC70 Heat-Shock Proteins
  • HSP90 Heat-Shock Proteins
  • Molecular Chaperones
  • Ricin