Broad-band dielectric measurements for fructose-water mixtures with fructose concentrations between 70.0 and 94.6 wt% were carried out in the frequency range of 2 mHz to 20 GHz in the temperature range of -70 to 45 degrees C. Two relaxation processes, the alpha process at lower frequency and the secondary beta process at higher frequency, were observed. The dielectric relaxation time of the alpha process was 100 s at the glass transition temperature, T(g), determined by differential scanning calorimetry (DSC). The relaxation time and strength of the beta process changed from weaker temperature dependences of below T(g) to a stronger one above T(g). These changes in behaviors of the beta process in fructose-water mixtures upon crossing the T(g) of the mixtures is the same as that found for the secondary process of water in various other aqueous mixtures with hydrogen-bonding molecular liquids, polymers, and nanoporous systems. These results lead to the conclusion that the primary alpha process of fructose-water mixtures results from the cooperative motion of water and fructose molecules, and the secondary beta process is the Johari-Goldstein process of water in the mixture. At temperatures near and above T(g) where both the alpha and the beta processes were observed and their relaxation times, tau(alpha) and tau(beta), were determined in some mixtures, the ratio tau(alpha)/tau(beta) is in accord with that predicted by the coupling model. Fixing tau(alpha) at 100 s, the ratio tau(alpha)/tau(beta) decreases with decreasing concentration of fructose in the mixtures. This trend is also consistent with that expected by the coupling model from the decrease of the intermolecular coupling parameter upon decreasing fructose concentration.