We review recent theoretical and experimental advances in the elucidation of the dynamics of light harvesting in photosynthesis, focusing on recent theoretical developments in structure-based modeling of electronic excitations in photosynthetic complexes and critically examining theoretical models for excitation energy transfer. We then briefly describe two-dimensional electronic spectroscopy and its application to the study of photosynthetic complexes, in particular the Fenna-Matthews-Olson complex from green sulfur bacteria. This review emphasizes recent experimental observations of long-lasting quantum coherence in photosynthetic systems and the implications of quantum coherence in natural photosynthesis.