We describe the cloning and characterization of the Trichoderma harzianum Thctf1 gene, which shows high sequence identity with a transcription factor gene of Fusarium solani f. sp. pisi. In T. harzianum, disruption of the Thctf1 gene by homologous recombination gave rise to transformants that in plate experiments did not show the yellow pigmentation observed in the wild-type strain. In several Trichoderma spp. a yellow pigmentation and a coconut aroma have been related to the production of 6-pentyl-2H-pyran-2-one (6PP) compounds. Prompted by this, we explored whether the loss of pigmentation in the Thctf1 null mutants of T. harzianum might be related to the synthesis of 6PP. Chromatographic and spectroscopic analyses revealed that the disruptants did not produce two secondary metabolites, derived from 6PP and not previously described in the Trichoderma genus, that are present in wild-type culture filtrates. Since 6PP is a recognized antifungal compound, this ability was analyzed in both the disruptants and wild-type, observing that the Thctf1 null mutants of T. harzianum had reduced antimicrobial capacity. Our results point to the significant role of THCTF1 in the production of secondary metabolites and in the antifungal activity of T. harzianum.