T cell survival and homeostatic proliferation in the periphery requires T cell receptor (TCR) binding to restricting major histocompatability complex (MHC)-encoded molecules, as well as the availability of certain lymphokines. However, the exact mechanisms by which these signals interrelate and contribute to homeostasis are not understood. By performing T cell transfers into TCR transgenic hosts we detected a hierarchical order of homeostatic proliferation for T cells differing in MHC restriction, such that OT1 cells (K(b) restricted) proliferated in P14 (D(b)-restricted TCR) recipients, but not vice versa. Using K(b) mutant mice, we demonstrated that proliferation of OT1 cells in P14 recipients, as well as the ability of host OT1 cells to hinder the proliferation of donor P14 cells, were dependent on OT1-TCR binding to K(b) molecules. However, interclonal T cell competition was not mediated simply by competition for physical access to the MHC-bearing cell. This was shown in parabiotic pairs of OT1 and K(b) mutant mice in which P14 cells failed to proliferate, even though the OT1 cells could not interact with half of the APCs in the system. Thus, we conclude that the interaction between the TCR and restricting MHC molecule influences the ability to compete for trophic resources not bound to the stimulating APC. This mechanism allows a local competitiveness that extends beyond a T cell's specificity.