Marfan syndrome (MFS) is an inherited disorder of connective tissue due to mutations in FBN1 (90%) and TGFBR1 and TGFBR2 (5 to 10%) genes. Clinical and differential diagnosis is difficult because of the inter- and intrafamiliar marked heterogeneity and the variable onset age of clinical manifestations. Among the disorders, in differential diagnosis, thoracic aortic aneurysm (TAA) and Ullrich scleroatonic muscular dystrophy (UCMD) are reported. We evaluate the possibility of utilizing autofluorescence (AF) analysis as a diagnostic tool in the clinical and/or differential diagnosis of MFS and related disorders and in the investigation of the molecular mechanisms involved. Both multispectral imaging autofluorescence microscopy (MIAM) and autofluorescence microspectroscopy (AMS) have been used to characterize AF emission of fibroblasts from patients affected by inherited connective tissue disorders. Our preliminary results show significant differences in AF emission between normal and pathological fibroblasts, suggesting possible improvement in diagnostics of connective tissue disorders by AF analysis.