Evidence has accumulated indicating that only a minority of cancer cells with stem cell properties, cancer stem cells (CSCs), are responsible for maintenance and growth of the tumor. CD44 is currently used to identify CSCs as one of the cell surface markers for solid tumors. Here we report the identification, expansion, and characterization of CD44+ cancer stem-like cells from a permanent squamous cell carcinoma of the head and neck (SCCHN) cell line. Under serum-free medium culture conditions, a small population (less than 3%) of CD44+ cells in a permanent cancer cell line was dramatically increased up to around 40%. The CD44+ cell population also showed higher expression of CD133 and ABCG2 as compared with the CD44- cell population. Moreover, CD44+ cells possess not only a marked capacity for forming tumor spheres, proliferation, migration, and invasion in vitro, but also resistance to chemotherapeutic agents. Four genes related to chemoresistance, ABCB1, ABCG2, CYP2C8, and TERT, were up-regulated in a CD44+ cell population. Our findings indicate that a subpopulation of CSCs is maintained in the SCCHN cell line, and the presence of such CSCs has an important clinical implication for head and neck cancer treatment. Further characterization of CSCs may provide new insights for novel therapeutic targets and prognostic markers.