Introduction: Human Vgamma2Vdelta2 T cells play important role in immunity to infection and cancer by monitoring self and foreign isoprenoid metabolites with their gammadelta T cell antigen receptors. Like CD4 and CD8 alphabeta T cells, adult peripheral Vgamma2Vdelta2 T cells represent a pool of heterogeneous cells with distinct functional capabilities.
Purpose: The aim of this study was to characterize the phenotypes and functions of various Vgamma2Vdelta2 T cell subsets in patients with nasopharyngeal carcinoma (NPC). We sought to develop a better understanding of the role of these cells during the course of disease and to facilitate the development of immunotherapeutic strategies against NPC.
Results: Although similar total percentages of peripheral blood Vgamma2Vdelta2 T cells were found in both NPC patients and normal donors, Vgamma2Vdelta2 T cells from NPC patients showed decreased cytotoxicity against tumor cells whereas Vgamma2Vdelta2 T cells from normal donors showed potent cytotoxicity. To investigate further, we compared the phenotypic characteristics of Vgamma2Vdelta2 T cells from 96 patients with NPC and 54 healthy controls. The fraction of late effector memory Vgamma2Vdelta2 T cells (T(EM RA)) was significantly increased in NPC patients with corresponding decreases in the fraction of early memory Vgamma2Vdelta2 T cells (T(CM)) compared with those in healthy controls. Moreover, T(EM RA) and T(CM) Vgamma2Vdelta2 cells from NPC patients produced significantly less IFN-gamma and TNF-alpha, potentially contributing to their impaired cytotoxicity. Radiotherapy or concurrent chemo-radiotherapy further increased the T(EM RA) Vgamma2Vdelta2 T cell population but did not correct the impaired production of IFN-gamma and TNF-alpha observed for T(EM RA) Vgamma2Vdelta2 T cells.
Conclusion: We have identified distinct alterations in the Vgamma2Vdelta2 T cell subsets of patients with NPC. Moreover, the overall cellular effector function of gammadelta T cells is compromised in these patients. Our data suggest that the contribution of Vgamma2Vdelta2 T cells to control NPC may depend on the activation state and differentiation of these cells.