A compact all-fiber displacement interferometer (AFDI) system, working at 1550 nm, has been developed and tested, and its working fundamentals will be introduced in this letter. In contrast with other models of fiber-optic velocity interferometer system, AFDI adopts a single-mode optic fiber pigtail as the detect head, diameter of which is only 1 mm, to collect directly the reflect laser beam from the moving surface, which makes this instrument have some unique advantages in observing the point movements of a small flyer. Preliminary experiments using this instrument to measure the velocity history of a small aluminum thin foil driven by a nanosecond pulse laser were conducted successfully, the precise velocity history profile deduced from the sharp interference fringes and the nanometer resolution in displacement gives an eloquent proof of its eminent abilities. The field depth (approximately 2 mm) of our AFDI is a little smaller than the DISAR [Weng et al., Appl. Phys. Lett. 89, 111101 (2006)] system, but its compact structure makes it much convenient to operate. Further applications for multipoints velocity history measurements of small targets are under consideration.