Detection and quantification of noroviruses in shellfish

Appl Environ Microbiol. 2009 Feb;75(3):618-24. doi: 10.1128/AEM.01507-08. Epub 2008 Dec 1.

Abstract

Noroviruses (NoVs) are the most common viral agents of acute gastroenteritis in humans, and high concentrations of NoVs are discharged into the environment. As these viruses are very resistant to inactivation, the sanitary consequences are contamination of food, including molluscan shellfish. There are four major problems with NoV detection in shellfish samples: low levels of virus contamination, the difficulty of efficient virus extraction, the presence of interfering substances that inhibit molecular detection, and NoV genetic variability. The aims of this study were to adapt a kit for use with a method previously shown to be efficient for detection of NoV in shellfish and to use a one step real-time reverse transcription-PCR method with addition of an external viral control. Comparisons of the two methods using bioaccumulated oysters showed that the methods reproducibly detected similar levels of virus in oyster samples. Validation studies using naturally contaminated samples also showed that there was a good correlation between the results of the two methods, and the variability was more attributable to the level of sample contamination. Magnetic silica very efficiently eliminated inhibitors, and use of extraction and amplification controls increased quality assurance. These controls increased the confidence in estimates of NoV concentrations in shellfish samples and strongly supported the conclusion that the results of the method described here reflected the levels of virus contamination in oysters. This approach is important for food safety and is under evaluationfor European regulation.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Norovirus / isolation & purification*
  • Reference Standards
  • Reproducibility of Results
  • Reverse Transcriptase Polymerase Chain Reaction / methods*
  • Reverse Transcriptase Polymerase Chain Reaction / standards
  • Sensitivity and Specificity
  • Shellfish / virology*