Graminaceous plants take up iron through YS1 (yellow stripe 1) and YS1-like (YSL) transporters using iron-chelating compounds known as mugineic acid family phytosiderophores. We examined the expression of 18 rice (Oryza sativa L.) YSL genes (OsYSL1-18) in the epidermis/exodermis, cortex, and stele of rice roots. Expression of OsYSL15 in root epidermis and stele was induced by iron deficiency and showed daily fluctuation. OsYSL15 restored a yeast mutant defective in iron uptake when supplied with iron(III)-deoxymugineic acid and transported iron(III)-deoxymugineic acid in Xenopus laevis oocytes. An OsYSL15-green fluorescent protein fusion was localized to the plasma membrane when transiently expressed in onion epidermal cells. OsYSL15 promoter-beta-glucuronidase analysis revealed that OsYSL15 expression in roots was dominant in the epidermis/exodermis and phloem cells under conditions of iron deficiency and was detected only in phloem under iron sufficiency. These results strongly suggest that OsYSL15 is the dominant iron(III)-deoxymugineic acid transporter responsible for iron uptake from the rhizosphere and is also responsible for phloem transport of iron. OsYSL15 was also expressed in flowers, developing seeds, and in the embryonic scutellar epithelial cells during seed germination. OsYSL15 knockdown seedlings showed severe arrest in germination and early growth and were rescued by high iron supply. These results demonstrate that rice OsYSL15 plays a crucial role in iron homeostasis during the early stages of growth.